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Abstract
Recently promulgated Draft Guidance from the US Food and Drug Administration 
Oncology Center of Excellence (OCE) recommends randomized, parallel dose–
response trials for “dose optimization,” but with vaguely stated aims that engage 
none of the statistical principles which typically attend randomization. Here, I 
advance a criterion for reasonable precision of such trials, and examine its im-
plications for minimum enrollment, within a utility-based framework that ac-
knowledges interindividual heterogeneity simultaneously in pharmacokinetics/
pharmacodynamics and in the subjective evaluation of efficacy-toxicity trade-
offs. Even when designed and conducted under ideal circumstances, reasonably 
sized trials of the kind advocated by OCE may need to enroll many hundreds of 
participants.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Under the rubric of “Project Optimus,” the US Food and Drug Administration's 
Oncology Center of Excellence (OCE) has developed a doctrine that urges dose-
randomization studies for “dose optimization” before conducting phase III reg-
istration trials of cancer drugs. Absent any formal analysis or simulation studies, 
it remains unclear how the OCE intends such trials to be designed or analyzed.
WHAT QUESTION DID THIS STUDY ADDRESS?
What criteria must a reasonable dose-randomization study meet? How many par-
ticipants must these studies enroll to meet these criteria?
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
Dose-randomization studies require enrollments in the hundreds to properly 
characterize the efficacy-toxicity trade-offs between two doses, even assuming 
optimal foresight in choosing the dose pair tested.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
The formal model proposed here may help designers of oncology clinical trials 
to think more concretely and realistically about interindividual heterogeneity in 
dose-efficacy trade-offs.
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INTRODUCTION

The US Food and Drug Administration (FDA) Oncology 
Center of Excellence (OCE) has recently promulgated 
draft guidance recommending randomized, parallel dose–
response trials for “dose optimization,”1 apparently with-
out having undertaken formal modeling and simulation 
work to sharpen their thinking.2–4 Principles of pharma-
cometrics can be useful not only in the analysis of pre-
clinical and early-phase trial data, but also for abstract 
foundational concept development as needed for the ra-
tional development of such guidance.

METHODS

A model of individual-patient efficacy-toxicity trade-off is 
posited, with heterogeneity across individuals regarding 
both dose-efficacy and dose-toxicity relations. The model is 
solved to obtain a closed-form expression for individually 
optimal dosing, and numerical methods are used to find the 
“optimal [single] dose” that maximizes expected utility in 
the population under one-size-fits-all dosing. The ratio of 
benefit to harm terms in this expected utility is proposed as 
a measure of intrinsic drug tolerability. An expression for 
the utility lost to the one-size-fits-all dosing constraint is also 
given. Finally, a criterion is proposed for reasonable preci-
sion of a dose-randomization trial, then a formula for the 
minimum size of such a trial is derived and explored nu-
merically as a function of drug tolerability and interindivid-
ual variability of pharmacokinetics and pharmacodynamics 
(PK/PD). All computation was done with Julia version 1.9.5

Utilities

We take therapeutic efficacy, measured as the probability 
of achieving some good outcome, such as a remission, to 
constitute a utility measure. We posit a maximum effect 
(Emax)-type dose-efficacy curve:

monotone increasing and concave, with Pr
(
ED50

) ≡ 0.5Pmax 
and asymptote Pr(∞) = Pmax.

We will suppose that the disutility of toxicity T can 
be expressed objectively in units of Pr, and that the dose-
toxicity relation T(D) is of the convex form:

Note that T(D∗) ≡ 1 means the toxicity at dose D∗ is severe 
enough to nullify even the maximal utility Pr = 1 of cer-
tain therapeutic benefit. Thus D∗ sets a strict upper bound 
on the tolerable dose range. While adopting the simplify-
ing assumption that � is a fixed characteristic of the ther-
apy itself, we will suppose D∗ varies from one patient to 
another to reflect heterogeneity jointly in individuals' PK/
PD and in their subjective evaluation of toxicity.

Individually optimal dosing

As depicted in Figure 1, the net utility U (D) = Pr(D) − T(D) 
is then strictly concave, and its unique maximum occurs 
at the (individually) optimal dose D̂ determined by:

It is relatively straightforward to transform Equation 3 
to:

which we may see has the form z = wew, if we identify its 
left-hand side with z and Dln2∕

(
�ED50

)
 with w. Because 

z > 0, this has the unique real solution w =W0(z), where 
W0 denotes the principal branch of the Lambert W func-
tion.6,§4.13 Thus we obtain:

(1)
Pr(D) =Pmax

(
1−0.5D∕ED50

)

=Pmax

[
1−exp

(
−
Dln2

ED50

)]
, 0<Pmax≤1,

(2)T(D) =
(
D

D∗

)1+𝜂
, 𝜂 > 0.

(3)P�r

(
D̂
)
= T �

(
D̂
)
.

(
�Pmax
1+�

)1∕�(
D∗ln2

�ED50

) 1+�
�

=
Dln2

�ED50
exp

(
D ln2

�ED50

)
,

(4)D̂
�
ED50,D

∗
�
=

�ED50

ln2
W0

⎡⎢⎢⎣

�
�Pmax
1+�

� 1
�
�
D∗ln2

�ED50

� 1+�
�
⎤⎥⎥⎦
.

F I G U R E  1   The individual-level dose-optimization problem of 
Equations 1–3.
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Expected utilities

To develop population-average results, we will suppose 
that the parameters Pmax and � are fixed, whereas ED50 
and D∗ are inverse-gamma distributed:

the Inv-Gamma density being:

The closed form of Equation 4 enables us efficiently to 
compute the integrand in:

to integrate numerically for the expected (per capita) 
utility of individually optimal dosing. The integrals in 
the expected utility U (D) = Pr(D) − T(D) of a one-size-
fits-all dose D, however, are readily obtained in closed 
form:

and

A quantity of particular interest is the ratio:

interpretable as a tolerability index for dose D: large values 
𝜏(D)≫ 1 indicate that benefit Pr(D) far outweighs harms 
from toxicity T(D), whereas values of �(D) approaching 1 
indicate that harms nearly cancel out benefits; 𝜏(D) < 1 in-
dicates net harm at dose D.

It is especially noteworthy that Equation 7 may be writ-
ten as:

showing that T(D) depends on parameters a and b only 
through �(1). This proves to be important below, where by 
normalizing our dose units so that median ED50 ≡ 1, we 
render �(1) interpretable as the tolerability of median ED50.

Optimal one-size-fits-all dosing

A regulatory agency constrained to “advocating a [single] 
dose for a population”7, at [1:08:07] faces the problem of find-
ing the population-optimal dose:

Being a straightforward population-average over many 
optimization problems such as depicted in Figure  1, this 
problem possesses the same concavity, and enjoys the same 
guarantee of a unique positive solution, which we obtain 
by solving a first-order condition analogous to Equation 3:

This takes the form:

which we solve for D̃ = �x∕ ln2 by finding the unique real 
root of:

Section S1 develops bounds for a numerical search.
Whereas I have previously treated the cost of one-size-

fits-all dosing solely in terms of its impact on efficacy,8,9 
Equations 5, 6, 7, and 10 allow for a more coherent and 
comprehensive treatment of net utility loss:

For further exploration of this, see Section S2.

ED50∼ Inv-Gamma(�, �)

D∗ ∼ Inv-Gamma(a, b),

f (x; �, �) =
��
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A lower bound on dose-randomization 
trial size

Although generally dose optimization may require 
adaptive exploration that ranges over many distinct 
doses, in order to obtain a strong lower bound on 
dose-randomization trial size, we consider the power-
maximizing limit where n participants are randomized 
to one of two doses.

Suppose we enroll a total of n participants into two 
arms each of size n∕2, at doses D1 < D2 with respective 
efficacy probabilities p1 < p2; then the observed difference 
in proportions of successes in the two arms is an unbiased 
estimator of p2 − p1 with standard error:

Adopting the rather weak standard that properly char-
acterizing the difference p2 − p1 requires that Equation 13 
not exceed half the actual difference p2 − p1, then we ob-
tain the bound:

To obtain a definite bound, we furthermore apply this 
criterion to a trial ideally designed to exhibit the canoni-
cal aspiration of Project Optimus: one in which the lower 
dose just so happens to be D̃, and the higher dose imposes 
twice the toxicity burden of the lower dose:

Happily, the simple power-law form of T(D) (see also 
Equation 9) allows us to solve Equation 15 for D2 in terms  
of D1: D2 = D1 ⋅ 2

1∕(1+�). Thus, we may obtain a definite 
lower bound on n by substituting:

on the RHS of Equation 14:

This trial is depicted in Figure 2, the purely geometri-
cal nature of which abstracts away the dose scale, thereby 

underscoring the genericity of our analysis. (The specific 
dimensions shown incidentally match the worked exam-
ple in Section S3.)

A systematic reduction of the 
parameter space

The model posited here involves no fewer than 6 distinct 
parameters: 

{
Pmax, �, �, �, a, b

}
. The � dimension may be 

eliminated by scaling dose units so that median ED50 is 1. 
Furthermore, because parameters a and b enter into Equa-
tion 17 only via D̃'s dependence on �(1), we can collapse 
the two dimensions (a, b) to the single dimension of �(1) 
in an analysis of nmin. (Importantly, our scaling of dose 
units renders �(1) readily interpretable, as the tolerability 
of median ED50.) Of the four dimensions that remain after 
these reductions, we condition on a few discrete values of 
Pmax and �:

then use two-dimensional contour plots to describe the re-
maining dependence of nmin.
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√
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)
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+
p2
(
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)
n∕2

.
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)
(
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)2 .
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[
T
(
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)]
= 2 ⋅ E

[
T
(
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.

(16)p1 = Pr
(
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)
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(
D̃ ⋅ 21∕(1+�)

)

(17)

nmin=8
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(
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)
+p2

(
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(
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)2
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.

(18)
(
Pmax, �

)
∈ {0.8,0.9,1} ×

{
0.1,

1

2
, 1
}
,

F I G U R E  2   The dose-optimization trial of Equations 10, 15, and 
16, depicted as a geometrical construction upon the graph of the D
-parametrized curve 

(
T ,Pr

)
(D). The optimal one-size-fits-all dose D̃ 

is easily located with a 45/90° drafting triangle, at the point where a 
tangent to this curve has slope 1. The twice-as-toxic dose D2 may be 
constructed by projecting D̃ down to T

(
D̃
)
 on the horizontal axis, 

doubling this with the compass, and projecting 2T
(
D̃
)
 back up to 

the curve. By projecting these two doses onto the vertical axis, we 
obtain their efficacy probabilities p1 and p2.
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RESULTS

Our key result is shown in Figure 3, where level curves of 
nmin are plotted in the plane determined by plausible ranges 
for �

(
median ED50

)
 and IQR

median

(
ED50

)
, for several discrete 

values of Pmax and �. Dose-randomization trials meeting 
our reasonableness criterion (Equations 14 and 15) gen-
erally require enrollment of at least several hundred par-
ticipants. Although some corner regions in Figure 3 agree 

in magnitude with sizes of randomized dose-optimization 
trials OCE cites as exemplary (e.g., N = 196 for DREAMM-
2),3 it is notable that even modest departures from Pmax = 1 
inflate nmin well above 200—especially for the intrinsically 
more tolerable drugs (𝜏 ≫ 2) specifically cited in the ra-
tionale of Project Optimus. Indeed, Figure 2 offers some 
geometrical intuition for how decreasing Pmax may crowd 
p1 and p2 closer together, shrinking the denominator of 
Equation 17 and driving nmin higher.

F I G U R E  3   Minimum enrollment for dose-randomization trials, according to Equations 10, 14, and 16 as a function of drug tolerability 
and interindividual variability (IIV) in ED50, under several possible combinations of 

(
Pmax, �

)
. The tolerability index � of Equation 8 is 

evaluated at median ED50, and shown on a logarithmic scale. The ratio of interquartile range (IQR) to median is used to quantify IIV of ED50.
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DISCUSSION

To my knowledge, the design of oncology dose-
optimization trials has not previously been explored in a 
setting that explicitly acknowledges continuous variabil-
ity between patients in respect to their PK/PD and to the 
utilities underlying their consideration of efficacy-toxicity 
trade-offs. I have previously analyzed the safety of dose-
finding trials as a function of PK/PD heterogeneity.10,11 
Heterogeneity over utilities has been considered previ-
ously in a categorical manner, linked to predefined prog-
nostic subgroups.12,13

Explicit acknowledgment of continuous variation in 
PK/PD tends to raise the specter of adaptive dose individ-
ualization,14–16 which the FDA's OCE shuns because:

That is what an individual doctor has to do 
with an individual patient, and here again, 
that doesn't kind of fit in to the FDA because 
we're advocating a dose for a population. But 
… for an individual [dosing] decision, that is 
the practice of medicine that the FDA does 
not regulate.7, at [1:07:53]

One need not appeal to regulatory politics, however, to 
conceive circumstances in which dose-randomization 
trials of the kind analyzed here might rationally be un-
dertaken. If treatment occurs in a relatively brief epi-
sode, for example, so that neither benefits nor toxicities 
become evident until after administration of a full dose, 
then the modality offers no reasonable prospect for dose 
titration. (The hypothetical case of a single radiation treat-
ment might be taken to exemplify this situation.) Such a 
setting also averts troublesome factors, such as treatment 
discontinuation, that would complicate the simple trial 
analysis presumed in Equation  13. It is clear, however, 
that the FDA OCE intends that dose-randomization tri-
als be undertaken quite broadly, with indeed much em-
phasis being placed on modern targeted agents that are 
intrinsically more tolerable than chemotherapy, and may 
be administered chronically.1–3 Nevertheless, because of 
the manner in which it concedes optimal foresight in trial 
design and conduct, the analysis offered here applies to 
any one-size-fits-all “dose optimization” trial, whether its 
rationale be political or driven by essential characteristics 
of the therapy.

Regarding the particular question addressed here, 
namely that of trial sample sizes, the new Draft Guidance 
states:

The trial should be sized to allow for sufficient 
assessment of activity, safety, and tolerability 

for each dosage. The trial does not need to be 
powered to demonstrate statistical superior-
ity of a dosage or statistical non-inferiority 
among the dosages.1

This echoes similar language from an antecedent New 
England Journal of Medicine Perspective:

Although conducting noninferiority com-
parisons is probably infeasible in many 
small, biomarker-defined subgroups of pa-
tients with cancer, early efficacy, safety, and 
exposure-response data collected from a ran-
domized trial would support more informed 
dose selection.2

The “reasonableness” criterion advanced here (Equa-
tions  14 and 15) aims to supply a rigorous basis for ob-
jective analysis, against the invitation to impressionistic 
judgment4 offered by the vague language “sufficient as-
sessment” and “more informed dose selection.” We note 
that this criterion addresses directly “the major issue” mo-
tivating Project Optimus:

It is very hard to retrofit a dose of the drug 
and I can't emphasize [enough] how import-
ant it is to try — and that's why we're spend-
ing all this time — to try to get it right up 
front, because: here again, you don't know 
then if, when you reduce a dose, will it have 
the same efficacy, and that's the major issue 
here.7, at [1:08:18]

The purely geometrical character of Figure 2 underscores 
the genericity of this criterion, and of the minimum trial 
sizes it implies.

But apart from this overt focus on trial size, the basic 
tools developed here may prove more broadly useful. For 
example, the objective tolerability notion expressed by � 
may support rational comparisons of drug candidates in 
early development. The utility-based optimization frame-
work of Equations 1, 2 and 10 may stimulate empirical re-
search on the efficacy-toxicity trade-off considerations of 
real patients. Whether 0.1 < 𝜂 < 1.0 covers a relevant range 
of patient perspectives, and indeed whether Equation  2 
suitably expresses a utility commensurable with Equa-
tion 1, are hardly obvious and warrant empirical scrutiny. 
My greatest hope for this analysis is that it demonstrates 
the possibility of formalizing pharmacologic notions un-
derlying dose–response investigations, and provokes a 
critical response that generates further progress in that 
direction.
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